Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177923

RESUMO

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Assuntos
Herpesvirus Humano 6 , Proteínas Imediatamente Precoces , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Infecções por Roseolovirus/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Integração Viral , Instabilidade Genômica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Sci Adv ; 9(32): eadf4082, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556550

RESUMO

Interstrand DNA cross-links (ICLs) represent complex lesions that compromise genomic stability. Several pathways have been involved in ICL repair, but the extent of factors involved in the resolution of ICL-induced DNA double-strand breaks (DSBs) remains poorly defined. Using CRISPR-based genomics, we identified FIGNL1 interacting regulator of recombination and mitosis (FIRRM) as a sensitizer of the ICL-inducing agent mafosfamide. Mechanistically, we showed that FIRRM, like its interactor Fidgetin like 1 (FIGNL1), contributes to the resolution of RAD51 foci at ICL-induced DSBs. While the stability of FIGNL1 and FIRRM is interdependent, expression of a mutant of FIRRM (∆WCF), which stabilizes the protein in the absence of FIGNL1, allows the resolution of RAD51 foci and cell survival, suggesting that FIRRM has FIGNL1-independent function during DNA repair. In line with this model, FIRRM binds preferentially single-stranded DNA in vitro, raising the possibility that it directly contributes to RAD51 disassembly by interacting with DNA. Together, our findings establish FIRRM as a promoting factor of ICL repair.


Assuntos
Reparo do DNA , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas/genética , DNA/genética , Mitose
3.
Antioxidants (Basel) ; 9(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403251

RESUMO

In patients with abdominal region cancers, ionizing radiation (IR)-induced long-term liver injury is a major limiting factor in the use of radiotherapy. Previously, the major mitochondrial deacetylase, sirtuin 3 (SIRT3), has been implicated to play an important role in the development of acute liver injury after total body irradiation but no studies to date have examined the role of SIRT3 in liver's chronic response to radiation. In the current study, ten-month-old Sirt3-/- and Sirt3+/+ male mice received 24 Gy radiation targeted to liver. Six months after exposure, irradiated Sirt3-/- mice livers demonstrated histopathological elevations in inflammatory infiltration, the loss of mature bile ducts and higher DNA damage (TUNEL) as well as protein oxidation (3-nitrotyrosine). In addition, increased expression of inflammatory chemokines (IL-6, IL-1ß, TGF-ß) and fibrotic factors (Procollagen 1, α-SMA) were also measured in Sirt3-/- mice following 24 Gy IR. The alterations measured in enzymatic activities of catalase, glutathione peroxidase, and glutathione reductase in the livers of irradiated Sirt3-/- mice also implied that hydrogen peroxide and hydroperoxide sensitive signaling cascades in the absence of SIRT3 might contribute to the IR-induced long-term liver injury.

4.
Gene Expr ; 20(1): 25-37, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31757226

RESUMO

Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Células Estreladas do Fígado/ultraestrutura , Miofibroblastos/ultraestrutura , Proteínas Qb-SNARE/deficiência , Proteínas Qc-SNARE/deficiência , Citoesqueleto de Actina/química , Fatores de Despolimerização de Actina/biossíntese , Actinas/análise , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Movimento Celular , Separação Celular , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/citologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos , Proteínas Qb-SNARE/antagonistas & inibidores , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/fisiologia , Proteínas Qc-SNARE/antagonistas & inibidores , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Fibras de Estresse/química , Fibras de Estresse/ultraestrutura , Cicatrização , Quinases Associadas a rho/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(39): 19552-19562, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501315

RESUMO

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Instabilidade Genômica , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Humanos , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/virologia
6.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154076

RESUMO

DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Proteínas Mad2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fase G2/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Fase S/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
Gene Expr ; 17(4): 327-340, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893353

RESUMO

Epithelial response to injury is critical to the pathogenesis of biliary cirrhosis, and IL-6 has been suggested as a mediator of this phenomenon. Several liver cell types can secrete IL-6 following activation by various signaling molecules including circulating adenosine. The aims of this study were to assess whether adenosine can induce IL-6 secretion by cholangiocytes via the A2b adenosine receptor (A2bAR) and to determine the effect of A2bAR-sensitive IL-6 release on injury response in biliary cirrhosis. Human normal cholangiocyte H69 cells were used for in vitro studies to determine the mechanism by which adenosine and the A2bAR induce release of IL-6. In vivo, control and A2bAR-deficient mice were used to determine the roles of A2bAR-sensitive IL-6 release in biliary cirrhosis induced by common bile duct ligation (BDL). Additionally, the response to exogenous IL-6 was assessed in C57BL/6 and A2bAR-deficient mice. Adenosine induced IL-6 mRNA expression and protein secretion via A2bAR activation. Although activation of A2bAR induced cAMP and intracellular Ca2+ signals, only the Ca2+ signals were linked to IL-6 upregulation. After BDL, A2bAR-deficient mice have impaired survival, which is further impaired by exogenous IL-6; however, decreased survival is not due to changes in fibrosis and no changes in inflammatory cells. Exogenous IL-6 is associated with the increased presence of bile infarcts. Extracellular adenosine induces cholangiocyte IL-6 release via the A2bAR. This signaling pathway is important in the pathogenesis of injury response in biliary cirrhosis but does not alter fibrosis. Adenosine upregulates IL-6 release by cholangiocytes via the A2bAR in a calcium-sensitive fashion. Mice deficient in A2bAR experience impaired survival after biliary cirrhosis induced by common bile duct ligation independent of changes in fibrosis.


Assuntos
Adenosina/farmacologia , Ductos Biliares/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Interleucina-6/genética , Cirrose Hepática Biliar/genética , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Linhagem Celular , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Estimativa de Kaplan-Meier , Cirrose Hepática Biliar/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/metabolismo
8.
Purinergic Signal ; 13(4): 417-428, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28667437

RESUMO

Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.


Assuntos
5'-Nucleotidase/biossíntese , Regulação da Expressão Gênica/fisiologia , Cirrose Hepática/metabolismo , Miofibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Am J Pathol ; 187(1): 122-133, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842214

RESUMO

Sortilin, a member of the vacuolar protein sorting 10 domain receptor family, traffics newly synthesized proteins from the trans-Golgi network to secretory pathways, endosomes, and cell surface. Sortilin-trafficked molecules, including IL-6 and acid sphingomyelinase (aSMase), mediate cholangiocyte proliferation and liver inflammation, hepatic stellate cell activation, hepatocyte apoptosis, and fibrosis. Based on these sortilin-regulated functions, we investigated its role in biliary damage leading to hepatocellular injury and fibrosis. Sortilin-/- mice displayed impaired inflammation and ductular reaction 3 days after bile duct ligation (BDL), as demonstrated by reduced cholangiocyte proliferation and activation and reduced serum IL-6. Interestingly, liver fibrosis was reduced in Sortilin-/- mice after both BDL and carbon tetrachloride treatment, in line with attenuated in vitro activation of Sortilin-/- hepatic stellate cells. Sortilin-/- hepatic aSMase activity was reduced in the BDL and carbon tetrachloride models and accompanied by reduced in vivo hepatocyte apoptosis. In addition, wild type (WT), but not Sortilin-/- hepatocytes, had increased aSMase-dependent susceptibility to bile acid-induced apoptosis in vitro. Mechanistically, short-term IL-6 neutralization in bile duct-ligated WT mice decreased hepatic inflammation and reactive cholangiocyte-derived cytokines and chemokines, without affecting fibrosis, whereas pharmacological inhibition of aSMase activity was not sufficient to attenuate hepatic fibrosis. Only combined IL-6 and aSMase inhibition significantly reduced fibrosis in bile duct-ligated WT mice. We conclude that sortilin regulates cholestatic liver damage and fibrosis via effects on both aSMase activity and serum IL-6.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Apoptose , Ductos Biliares/patologia , Colestase/complicações , Hepatócitos/patologia , Cirrose Hepática/patologia , Fígado/lesões , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proliferação de Células , Quimiocinas/metabolismo , Colestase/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Ligadura , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fenótipo , Esfingomielina Fosfodiesterase/metabolismo
10.
PLoS One ; 10(3): e0121161, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822334

RESUMO

The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular , Fígado/citologia , Miofibroblastos/fisiologia , Sistema Porta/citologia , Animais , Biomarcadores/metabolismo , Bromodesoxiuridina , Imunofluorescência , Immunoblotting , Miofibroblastos/citologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biochim Biophys Acta ; 1852(1): 120-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445541

RESUMO

Glioma cells release cytokines to stimulate inflammation that facilitates cell proliferation. Here, we show that Lipopolysaccharide (LPS) treatment could induce glioma cells to proliferate and this process was dependent on nucleotide receptor activation as well as interleukin-8 (IL-8/CXCL8) secretion. We observed that extracellular nucleotides controlled IL-8/CXCL8 and monocyte chemoattractant protein 1 (MCP-1/CCL2) release by U251MG and U87MG human glioma cell lines via P2X7 and P2Y6 receptor activation. The LPS-induced release of these cytokines was also modulated by purinergic receptor activation since IL-8 and MCP-1 release was decreased by the nucleotide scavenger apyrase as well as by the pharmacological P2Y6 receptor antagonists suramin and MRS2578. In agreement with these observations, the knockdown of P2Y6 expression decreased LPS-induced IL-8 release as well as the spontaneous release of IL-8 and MCP-1, suggesting an endogenous basal release of nucleotides. Moreover, high millimolar concentrations of ATP increased IL-8 and MCP-1 release by the glioma cells stimulated with suboptimal LPS concentration which were blocked by P2X7 and P2Y6 antagonists. Altogether, these data suggest that extracellular nucleotides control glioma growth via P2 receptor-dependent IL-8 and MCP-1 secretions.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Quimiocina CCL2/metabolismo , Glioma/metabolismo , Interleucina-8/metabolismo , Receptores Purinérgicos/fisiologia , Sequência de Bases , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Primers do DNA , Glioma/patologia , Humanos , Reação em Cadeia da Polimerase , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Transdução de Sinais
12.
F1000Res ; 4: 95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977756

RESUMO

Evidence demonstrating that regular ingestion of coffee has salutary effects on patients with chronic liver disease is accumulating rapidly. Specifically, it appears that coffee ingestion can slow the progression of liver fibrosis, preventing cirrhosis and hepatocellular carcinoma (HCC). This should excite clinicians and scientists alike, since these observations, if true, would create effective, testable hypotheses that should lead to improved understanding on fibrosis pathogenesis and thus may generate novel pharmacologic treatments of patients with chronic liver disease. This review is designed to examine the relevant clinical and epidemiological data in critical fashion and to examine the putative pharmacological effects of coffee relevant to the pathogenesis of liver fibrosis and cirrhosis. We hope that this will inspire relevant critical analyses, especially among "coffee skeptics". Of note, one major assumption made by this review is that the bulk of the effects of coffee consumption are mediated by caffeine, rather than by other chemical constituents of coffee. Our rationales for this assumption are threefold: first, caffeine's effects on adenosinergic signaling provide testable hypotheses; second, although there are  myriad chemical constituents of coffee, they are present in very low concentrations, and perhaps more importantly, vary greatly between coffee products and production methods (it is important to note that we do not dismiss the "botanical" hypothesis here; rather, we do not emphasize it at present due to the limitations of the studies examined); lastly, some (but not all) observational studies have examined both coffee and non-coffee caffeine consumption and found consistent effects, and when examined, no benefit to decaffeinated coffee has been observed. Further, in the interval since we examined this phenomenon last, further evidence has accumulated supporting caffeine as the effector molecule for coffee's salutary effects.

13.
Physiol Rep ; 2(11)2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25413315

RESUMO

Portal fibroblasts (PF) are one of the two primary cell types contributing to the myofibroblast population of the liver and are thus essential to the pathogenesis of liver fibrosis. Monocyte chemoattractant protein-1 (MCP-1) is a known profibrogenic chemokine that may be of particular importance in biliary fibrosis. We examined the effect of MCP-1 on release of matrix metalloproteinase-9 (MMP-9) by rat PF. We found that MCP-1 blocks PF release of MMP-9 in a posttranslational fashion. We employed an optical and electron microscopic approach to determine the mechanism of this downregulation. Our data demonstrated that, in the presence of MCP-1, MMP-9-containing vesicles were shunted to a lysosome-like compartment. This is the first report of a secretory protein to be so regulated in fibrogenic cells.

14.
Purinergic Signal ; 10(4): 631-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194703

RESUMO

Purinergic signaling regulates a diverse and biologically relevant group of processes in the liver. However, progress of research into functions regulated by purinergic signals in the liver has been hampered by the complexity of systems probed. Specifically, there are multiple liver cell subpopulations relevant to hepatic functions, and many of these have been effectively modeled in human cell lines. Furthermore, there are more than 20 genes relevant to purinergic signaling, each of which has distinct functions. Hence, we felt the need to categorize genes relevant to purinergic signaling in the best characterized human cell line models of liver cell subpopulations. Therefore, we investigated the expression of adenosine receptor, P2X receptor, P2Y receptor, and ecto-nucleotidase genes via RT-PCR in the following cell lines: LX-2, hTERT, FH11, HepG2, Huh7, H69, and MzChA-1. We believe that our findings will provide an excellent resource to investigators seeking to define functions of purinergic signals in liver physiology and liver disease pathogenesis.


Assuntos
Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Purinas/metabolismo , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Humanos , Fígado/citologia , Fígado/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Biol Chem ; 289(41): 28629-39, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25160621

RESUMO

In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αßMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials.


Assuntos
Antígenos CD/genética , Apirase/genética , Infertilidade Masculina/genética , Oligospermia/genética , Receptores Purinérgicos P2X1/genética , Espermatozoides/fisiologia , Ducto Deferente/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Apirase/deficiência , Ejaculação , Epididimo/enzimologia , Epididimo/fisiopatologia , Feminino , Regulação da Expressão Gênica , Infertilidade Masculina/enzimologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Músculo Liso/enzimologia , Músculo Liso/fisiopatologia , Oligospermia/enzimologia , Oligospermia/fisiopatologia , Oócitos/fisiologia , Receptores Purinérgicos P2X1/metabolismo , Capacitação Espermática , Ducto Deferente/fisiopatologia
16.
PLoS One ; 9(6): e98568, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887587

RESUMO

Ecto-5'-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3) and missense (c.1073G→A, p.C358Y designated F2) NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3) in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3) result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel "trafficking-opathy".


Assuntos
5'-Nucleotidase/genética , Mutação , Animais , Células COS , Chlorocebus aethiops , Proteínas Ligadas por GPI/genética , Humanos
17.
PLoS One ; 9(4): e96043, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24763616

RESUMO

RATIONALE: Lack of an experimental model of portopulmonary hypertension (POPH) has been a major obstacle in understanding of pathophysiological mechanisms underlying the disease. OBJECTIVE: We investigated the effects of CCl4-mediated cirrhosis on the pulmonary vasculature, as an initial step towards an improved understanding of POPH. METHODS AND RESULTS: Male C57BL/6 mice received intraperitoneal injection of either sterile olive oil or CCl4 3 times/week for 12 weeks. Cirrhosis and portal hypertension were confirmed by evidence of bridging fibrosis and nodule formation in CCl4-treated liver determined by trichrome/picrosirius red staining and an increase in spleen weight/body weight ratio, respectively. Staining for the oxidative stress marker, 4-hydroxynonenal (4-HNE), was strong in the liver but was absent in the lung, suggesting that CCl4 did not directly induce oxidative injury in the lung. Pulmonary acceleration time (PAT) and the ratio of PAT/pulmonary ejection time (PET) measured by echocardiography were significantly decreased in cirrhotic mice. Increase in right ventricle (RV) weight/body weight as well as in the weight ratio of RV/(left ventricle + septum) further demonstrated the presence of pathological changes in the pulmonary circulation in these mice. Histological examination revealed that lungs of cirrhotic mice have excessive accumulation of perivascular collagen and thickening of the media of the pulmonary artery. CONCLUSION: Collectively, our data demonstrate that chronic CCl4 treatment induces pathological changes in pulmonary circulation in cirrhotic mice. We propose that this murine cirrhotic model provides an exceptional tool for future studies of the molecular mechanisms mediating pulmonary vascular diseases associated with cirrhosis and for evaluation of novel therapeutic interventions.


Assuntos
Tetracloreto de Carbono , Hipertensão Pulmonar/patologia , Cirrose Hepática/patologia , Pulmão/patologia , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Hidroxiácidos/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo
19.
Curr Pathobiol Rep ; 1(3): 225-230, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23997993

RESUMO

The most common cause of liver failure is cirrhosis, due to progressive liver fibrosis and other architectural changes in the liver. Fibrosis occurs after liver injury or stress and results directly from an imbalance between the processes of extracellular matrix synthesis (fibrogenesis) and degradation (fibrolysis). Although research studies have identified several promising targets at the molecular level, current therapies to prevent and treat hepatic fibrosis in patients have only shown limited success. It is well established that liver myofibroblasts are the primary effector cells responsible for the extensive extracellular matrix accumulation and scar formation observed during hepatic fibrosis, in both clinical and experimental settings. Thus, as the major fibrogenic cells implicated in wound healing and tissue repair response, liver myofibroblasts could represent excellent targets for antifibrotic therapies. Still, the exact natures and identities of liver myofibroblasts precursors have yet to be resolved, and their relative contribution to hepatic fibrosis to be determined. The goal of this review is to examine the relative importance of liver myofibroblast precursors in the pathogenesis of liver fibrosis.

20.
Physiol Rep ; 1(6): e00125, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24400134

RESUMO

Liver myofibroblasts derived from hepatic stellate cells (HSC) are critical mediators of liver fibrosis. Release of tissue inhibitor of metalloproteinase-1 (TIMP-1) advances liver fibrosis by blocking fibrinolysis. The mechanisms responsible for the posttranslational regulation of TIMP-1 by myofibroblastic HSC are unknown. Here, we demonstrate that TIMP-1 release by HSC is regulated in a posttranslational fashion via calcium-sensitive vesicular exocytosis. To our knowledge, this is the first article to directly examine vesicular trafficking in myofibroblastic HSC, potentially providing a new target to treat and or prevent liver fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...